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A method of choosing from among a long list of targets which move along known paths, those which can be attained with minimum 
losses with respect to the functional, is proposed. It involves interpolating the parameter values needed to construct optimal 
paths as solutions of the Cauchy problem. These parameter values are proved to be continuously dependent on the terminal 
coordinates in a small neighbourhood of the starting point. Asymptotic formulae are given for the initial approximations. The 
choice of the nearest asteroids as targets for the fastest flight of a spacecraft with a solar sail is discussed. © 1998 Elsevier Science 
Ltd. All fights reserved. 

How to minimize the loss functional as a dynamical controlled system approaches a target which is 
moving along a given trajectory is a problem of optimal control, and is usually solved by means of the 
maximum principle [1]. It is reduced to a two-point boundary-value problem for ordinary differential 
equations, yielding a system of equations which is non-linear in the boundary values of the conjugate 
variables, the system, coordinates and the time of displacement. Solving this system in order to reach 
a specific target involves two steps: seeking an initial approximation and improving that approxima- 
tion, by Newton's method, for example. The boundary conditions and initial approximations are different 
for each set of boundary conditions and the problem has to be solved separately for each target. If there 
is a large number of possible targets, one must first select the most valuable among them, as reflected 
by the numerical vakte of the minimized functional, and then calculate the corresponding optimal paths. 

If this involves insl~ecting the solutions of the boundary-value problems for each target in succession, 
it could be a very lengthy procedure. We therefore propose dividing it into two stages. In the first stage, 
the optimum boundary values of the conjugate variables and transference time are found for a grid 
of values of the terminal coordinates of targets which lie within the region of interest. The solution 
for the entire interior of the region is then interpolated from the discrete values of these parameters, 
giving a "bank of optimum parameters" to be used in the second step. The latter consists of calculating: 
(1) the optimum values of these parameters for given targets with known paths which intersect the region 
of interest, and (2) the paths along which these targets are reached with the least expenditure. 

Below we use this method to analyse and select asteroids which can be reached fastest by a spacecraft 
with a solar sail and we calculate the corresponding optimal flight paths. 

1. STATEMENT OF THE P R O B L E M ;  THE MAXIMUM P R I N C I P L E  

Consider a dynamical controlled system, the motion of the phase point of which in the phase space 
of states x, v; x e X, 'o e V, where X, V c E n are convex regions, is governed by the equations 

k = f ( x , u  ), ti = g ( x , u ,  u), u ~ U 

f :  R ~ x R n ~ R n, g: R n x R n × R m ~ R n 

(1.1) 

The control u is varied freely as far as the boundary of some set U C R m. Let the initial phase state 
the control u = const e Ube  a point of rest of system (1.1). x = O, ~ = O for  o 

In space X, there are N bodies moving along known smooth paths.~i (t), i = 1, 2 , . . . ,  N. The problem 
is to choose an optimal control which, under the necessary condition that at some encounter time ~i(tr) 
the coordinate x of system (1.1) is equal to tr, minimizes the loss functional 
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O(t r - ts,v (t, ) ) ~ min: (1.2) 

for those xi(t) for which this functional is no greater than a given positive quantity ~0, where ~(tr) is 
the velocity of  the phase point at the time of encounter, and t s is the starting date. 

Suppose that for each Xr ~ X °, where It o is some convex set: It o C X, 0 e )t °, we have found the 
minimum value of the loss functional ~*(Xr) = ~(T(xr), a~(Xr)) < ~0, where T(xr), ~(Xr) are the time of 
displacement to the pointXr and the finite velocity of a point M moving along the optimum path satisfying 
Eqs (1.1). Then the dependence ~r(tr) = O*(~(t,)) of the minimum value of the functional from the 
date tr of encounter with a given body , ( t )  and also the starting date 

t s = t~ - T(£(t,)) (1.3) 

can be calculated. The problem is simplified considerably by assuming that the initial value x(0) = 0, 
~(0) = 0 is a point of rest of system (1.1), since the starting time has no effect on the subsequent optimum 
motion of the point M and is chosen using formula (1.3). 

We now consider the boundary-value problem of the maximum principle to be solved for different 
values OfXr ~ _X °. Supposep(t )  ~/~n, q(t) ~ fin are differentiable functions which are conjugate tox,  
respectively (E" is the Euclidean space conjugate to E~). From the necessary condition of  optimality 
in the form of the maximum principle [2], it follows that there is a number a0 t> 0 such that the optimal 
control and trajectory satisfy the following equations 

~( t )  = f ( x , v  ), t i ( t )  = g ( x , o  , ~ ( q , x , u  )) 

~f a& = , p ~ o  (x,u ) _ q ~ ( x , o  ,~) i~t) =-p'~(x,o #(t) )-q~(x,v,~), 

x(O) = O, o (0) = O, x(T) = x r, q(T) = - a  o ~ - ~ ( T , v  (T)) (1.4) 

H(x,u, p,q,~)l T = a 0 ~T~(T ,v  (T)) 

~(q,  x,v ) = arg maxu~ u (q, g(x ,u,  u)) 

In the usual notation, x, ~, f, g are column vectors, p and q are row vectors, 0f//tr, 0f/~o, ~gg/~x, Og/O~ 
are (n x n) matrices, ( . ,  .) is the matrix product of a row and column vector and H(x, ~, p, q, u) = (p, 
f(x, "o)) + (q, g(x, ~, u)) is the Hamiltonian of system (1.1). 

The numerical value of the parameter a0(0 ~< a0 < 0-) does not affect the trajectory and control in 
system (1.4) which satisfy the maximum principle. Moreover, the fact that system (1.4) is autonomous 
ensures that H is constant; then since f(0, 0) = 0, from (1.4) we obtain 

H(T) = H(O) = (q(O), g(O,O,~)) = a o ~TT (T,v (T)) 

and the arbitrariness in the choice of a 0 can be removed by introducing the normalizing condition 
II q(0) II = 1. 

The optimal trajectory can be computed if the missing values of the transference time and conjugate 
variables in system (1.4) at the left- or right-hand end of the trajectory are known. At the left-hand end 
we need only determine the initial values ofp0 = p(0), q0 = q(0) and the displacement time T or at the 
right-hand end---pr = p(T), Vr = v(T) and T. Then a complete solution can be obtained by solving a 
Cauchy problem for Eqs (1.4). If the solution is unique, it is optimal. 

Definition. An optimal manifold for the equations of a controlled object (1.1) which travels to the 
terminal point x, with minimum expenditure (1.2) is a set of  functions {~*, T, Po, qo}(Xr) at the left- 
hand end of the optimal trajectory, or {~*, T,p ,  vr}(Xr) at the fight-hand end, which are a solution of 
boundary-value problem (1.4) in the region xr e X U C X C E ~. 

2. A U N I Q U E N E S S  T H E O R E M  F O R  T H E  O P T I M A L  M A N I F O L D  IN T H E  
N E I G H B O U R H O O D  OF T H E  P O I N T  x = 0 

We will use the following notation: ~ = fv(0, 0) is an (n x n) matrix, g°(u) = g(O, O, u) is a column 
vector and G(x, ~) = {f°~g(x, ~, u): u e U} C E n is a vector set. Let the boundary 3G of the set G in a 
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neighbourhood of  t~ae starting point x = 0, ~ = 0 be described by a positive scalar twice continuously 
differentiable function R(x, ~, e), where II e II -- 1, e E E n, in such a way that for each vector e there is 
a unique control u c U for which 

~ g ( x , o ,  u(x,o , e)) = R(x,u, e)e (2.1) 

We define the scala:r function 

D(x,u ,s) =llsWR(x,v ,s/llsll), s ¢ E n 

Also R°(e) = R(O, O, e), D°(s) -- D(0, 0, s), G O = G(0, 0) is the set of vectors G(x, ~) with x = 0, ~) = 0. 

Theorem. Suppose that (1) in some neighbourhood of the pointx  = 0, v = 0 for u E U, IIe II = 1, e 
E n the functions f, g and R of (2.1) are twice continuously differentiable with respect to the set of  

the variables invol~d,  det (~v) ~ 0, R°(e) > 0; (2) the function D°(s) is strongly convex for s ¢ E~; (3) 
the function ¢(T, v) E C2[R "1 x Rn],fl~(0, 0) = 0 and takes its smallest value in the region T >- O, v ~ E n 
at the point T = 0, v - 0, where ¢b~ -- ~ ( 0 ,  O)/aT ~ O. 

Then ¢-o > 0 exists such that for all e E (0, ¢-0] and forx,  = ~2e the optimal manifold of problem (1.4) 
is unique, is a continuous function of x,, and has the following asymptotic forms 

O*(x,) - .  2,  f~*(Xr)=~'C~?~+O(E2)" T(Xr)= ~'-~t +U(~ I 

P°(X~)=£~(er--~-(e)(l-(ef J)))+O(F')] ' er e E" (2.2) 

where f~ is a normalizing factor. 
Here VR(s) = grad R(s) is a row vector, I is the identity (n x n) matrix and {e~j} is a symmetric matrix 

in which each element is equal to the product {eie]} of components ei of the vector e (i,j = 1, 2 , . . . ,  n). 

Proof. We introduce new variables into (1.4):x = e2Z, ~ = ~v, t = ~ ,  T = e~. It follows from Condition 
3 of the theorem that O~(T, ~) = 0 for T = 0, ~ = 0. Thus, the minimized functional ~ ( ~ ,  v) = 
¢b(T, v)/(gO°t) = ~ + e01(¢, ~, v), and system (1.4) takes the form 

d d ~-Z,=£°v+~(~,X,v) ,  ~ .v=g° (~ ' )+~(~ ,X,v ,~  ") 

d d o 
"~ P = --F..PI(£, P,q, ~, V,U ), "-~q =--pf~ --e~ql(g,p,q,~,V,~ ) 

Z(0) = V(0) = 0, q(~) = --¢O(e,i,V(~),q(0)) (2.3) 

~(~) = e ,  H q ( o ) ~ =  

(~(e,q,z,v) = argmax..u(q,g° (u) + eq~ (e, Z, v,u)) ) 

where the functions ~X, fl, gx, P~, qx, O are bounded and can be obtained from system (1.4). 
From boundary-value problem (2.3) we obtain a system of 2n + I non-linear equations in the 2n + 

I unknownsp0 = p(0), q0 = q(0) and 

¢P~(e, ~, Po,qo) d e -  x(e,'C, po,qo) = 0 

Yt (x, Po, qo) ~(for)-~ (qr (~, ~, P0, q0 ) + ~ Or)  = 0 (2.4) 

8(q0)d!lq0112 - 1  = 0 

For the solution of system (2.4) to be unique and continuous, by the theorem on the solvability of 
an implicit function it is sufficient to prove: 
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1. that there is a unique solution for e -o 0 and the Jacobian of the transformation for this case is 
non-degenerate when IIe II = 1, that is 

0 ( % , ¥ t , 8 )  
d = lira det ~ O, (2.5) 

~ o +  0(~, PO, qo ) 

2. the partial derivatives %, ~/~ are continuous with respect to all the variables that appear for e 
(o,  o1. 

We will prove the first statement. When e = 0, according to (2.3)p = 0. Thusp  = Po, q = -Pof ° and 
q(?) = 0, and therefore qo = ~Po~. Then as E ---> 0+ system (2.4) takes the form 

% £-fim+ d:t = e-  ~OgO (U(qo))~ = 0 

Vo r--a lim V~ =qo(fv°) - '  -Po~ffiO, ~)=0 
£'->0+ 

(u(qo) = arg mea ~ (qo, gO (u)) = arg m a~(qo (fv ° )-', fv° g ° (u))) 

(2.6) 

The projectionf°g°(u) onto the constant vector q0(f~v) -1 will be a maximum iff°g°(u(qo)) ~ OG. Thus, 
we can find s e E n for which 

fv°g°(u(qo)) = R°(l'~slll s llsll 

Ifs ~ 0G °, then II s II = R°(s/ll s II). Hence, D°(s) = 1 defines the surface 0G °. Thus if D°(s) is convex, 
we can obtain equations for s as a condition for the collinearity of q0(f~,) -I and grads D°(s) 

qo(fu°) -i = Qgrad s D°(s), D°(s) = 1 (2.7) 

where Q is a positive scalar multiplier. From the first equation of (2.6) % = 0 for s = eR°(e) it follows 
that 

e-R°(e)e~  2 / 2 = 0  

T A Thus, "~ = '~(2D°(e)) (11 e II = 1). From the second equation of (2.6) ¥0 = 0, we find thatp0 = ( l /z )  
q0(f°u) -1. Computing the gradient in (2.7) and combining the positive scalar coefficients into a coefficient 

which is computed from the normalizing condition 8 = 0, we finally obtain 

P0 = t 2 / e r - ~ o ( e ) ( l - { e i e j }  )] 
and also q0 = xPof °. Thus, we have found a single-valued solution of system (2.6) as e ~ 0 +. 

We prove inequality (2.5) by introducing intermediate vector variables S e E ~, P ~ E ~ and a scalar 
variable Q by the formulae 

s= g°fu(qo))  2 /2, e= pr 

Q =llqo(fv°)-111111VD°(S)ll 

(there are 2n + 1 scalar variables in all). From (2.7), we can write system (2.6) in the form 

% = e - S ,  ¥o = QVrD°( S ) -  P, 8 =llfv°rpll z -1 (2.8) 

The Jacobian of the transformation S, P, Q ~ %, ¥0, 8 is non-degenerate when % = 0, ~0 = 0, 8 = 
0. In fact, it can be represented as the determinant of the partitioned matrix 
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~(0o, ~o, 8) = d e t l ¥ o ,  -In n Vs rD°(S) d t =det a(S, P, Q) 
I Uon 2eT~°~ ° o 

where I n is the identity (n x n) matrix, O n is the null (n x n) matrix, ¥0s is the square matrix 3~g0/3S, On 
is a zero row vector and O n is the null column vector. Thus 

vr°°(s) [ 
dt=det(_l:)dct[ -1: = (_l)n2(v,oO(s),  f o forp)  

12eTt°TZ° o 
and since ¥0 = 0 in (2.8), that is, V,D°(S) = pT/Q, we have 

d 1 = (-1) n QIIfv°rPII 2 = 2 (-1)'Q 

provided that 8 = 0 in (2.8). Thus, dl@ 0. 
The intermediate transformation S, P, Q ---> qo0~ -1, p0, x2/2, represented by the formulae 

~2 
"-2 = Do(S), qo(fvO)_l = QV,DO(S) ' p~ = I m p  

~(s) 
is also non-degenerate if the conditions of the theorem and Eqs (2.6) are satisfied. 

In fact, like dl its Jacobian de can be represented in the form of the determinant of the partitioned 
matrix 

=det3(Po, (fv°) -! qo, ~2/2)  d2 =det 
3(P, S, Q) 

3 P 
Tin 

o~ OD°,(s) V~D°(S) 

0 n V,,D°(S) 0 

where (O/~s)(P/x(S)) is an (n x n) matrix and D ° is the (n x n) matrix of the second derivatives of the 
ftmetion D"(S) with respect to the components of the vector S. Then ,oo, s,,,°o s>11 ILo o,s, i 

d2 = det(/_~.ldet = ~ Q n - I  (2.9) 
k % ) ~VsD°(S) 0 V,D°(S) 0 

It follows from the strong convexity of D°(S) that det Ds°s > 0 [2]. Then k/(i = 1, 2 , . . . ,  n), not all 
zero, can be found far which 

Xn no X =3--~-/D°(S) (2.10) 
j = l ~ ' s i s j  j . . 

Hence, adding tlae remaining columns of (2.9) with coefficients -Tq to the last column of 
(VsrD°(S), 0) of diraension n + 1 (which will obviously not affect the original determinant) we 
obtain 

¢-' °n I d 2 = ~ detU 
Ilv,o°(s> -z,L,oox, 

Expanding the determinant by the last column and using (2.10), we finally have 
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Qn-I D o Z D O d 2 = - ~ - d e t  ss(- i , j  sisj~'i~'j) (2.11) 

The quadratic form on the right-hand side of Eq. (2.11) is~reater than zero for any X/which are 
not all zero since, again by virtue of the strong convexity of D (S), it is positive definite. Thus d2 # 0 
(d 2 < 0). 

The last relation needed to complete the proof of the first part of the theorem 

0 -I  ~2 
d 3 = det O(P0, ( fv)  q0, / 2) 

~(~, P0, q0) 
# 0  

is obvious, since ~ # 0 and by Condition 1 det(f~) # 0. Hence, the Jacobian (2.5) d = - ( d l / d 2 ) d  3 # 0. 
It is easy to show that the second proposition holds using the theorem on the continuous dependence 

of solutions of a system of ordinary differential equations and their partial derivatives (with respect to 
the initial data) on the initial data of Eqs (1.4). 

A sufficient condition for the solutions x(t), a)(t), p(t), q(t) and their partial derivatives with respect 
to the initial data in (1.4) to be continuous is that the functionsf, g are continuously twice differentiable 
with respect to the set of variables that they involve x, a~, u and the functions ~(q, x, a)), which can be 
computed uniquely from the maximum condition in (1.4), are continuously differentiable with respect 
to x, x), q in some neighbourhood of the point x = 0, ~ = 0. The former is satisfied by virtue of the 
initial assumptions of the theorem. We will examine the latter more fully. 

In some neighbourhood of the pointx = 0, ~ = 0 Eq. (2.1) has a unique solution with respect to u 
U, where, by the hypotheses about g and R, the function u(x, a~, e) (11 e II -- 1, e ~ E n) are continuously 

differentiable with respect to the set of variables involved. Thus, if the function 

e(q, x, v)=s(q,  x, u) lR(x,  u, slttslt) 

(s(q, x ,u)=arg  O,x~ max.s,=,,(q(fv°)-',s)) 

(2.12) 

is continuously differentiable with respect to q, x and u, then a(q, x, ~) of (1.4) is continuously 
differentiable with respect to the set q, x and ~. 

From (1.12) we obtain an equation for s(q, x, ~) similar to (2.7) 

q(fv0) -1 = QVsD(x, v, s), D(x, v, s) = 1 (2.13) 

where Q is a positive scalar normalizing factor. 
Hence, for the derivatives of e(q, x, ~) to be continuous with respect to q, x and ~, the components 

of the variation ~s must be uniquely solvable with respect to the components of the variations ~q, &, 
5~ for q, x and x) in (2.13). We can see from (2.13) that the system of linear equations in the variations 
~ ,  8Q has a smooth matrix of the form 

I D.~,(x, u, s) 

V.,D(x, u, s) 

0 vro x' v, s) I 

which can be proved to be non-degenerate in the neighbourhood of the zero point by a similar argument 
to the proof that the transformation with Jacobian 82 was non-degenerate. For such a neighbourhood 
to exist, it is necessary (but perhaps not sufficient) that the function D°(s) should be strongly convex, 
and this is ensured by the second condition of the theorem. 

Thus, in the given asymptotic case the boundary conditions of Eqs (2.4) are uniquely solvable 
with respect to the initial values of the conjugate variables and transference time. This proves the 
theorem. 

3. A S C H E M E  FOR C O M P U T I N G  THE O P T I M A L  M A N I F O L D  

We showed in Section 2 that the optimal manifold is continuously and uniquely defined by the set 
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of functions ~ * ( X r )  , Z ( X r )  , po(Xr), qo(Xr) in some neighbourhood of the terminal point Xr = O. Thus, ~o 
> 0 exists for which there is uniqueness and continuity for allxr e M = {x e E n, ~*(x) < ~0}. The 
values of  the functions of  the optimal manifold in the entire region M can be computed by the method 
of continuation with respect to a parameter  (CP) (see [3] for example) as follows. 

1. Choose a pointx0 ~ 0 sufficiently close tox = 0 (O*(x0) < ~0) and calculate the initial approximation 
there using the asymptotic formulae of the theorem. 

2. Improve the resulting approximation by solving boundary equations (2.4) numerically, by Newton's 
method, for example. 

3. Continue the solution from the optimal point T(xo), qo(Xo), po(xo) calculated to the entire region 
M by the CP method. 

The CP method can only be used to continue the solution along a one-dimensional curve which lies 
inside the region M. The steps between points (vertices or nodes) on that curve at which the values of 
the optimal manifold are computed are not constant. If the dimension of the spaeeXin which the convex 
region M is embedded is greater than one, we first construct a sequence of nodes lying along one of 
the coordinates as far as the boundary of M. Then each node of the sequence is a generator for a new 
sequence of nodes lying, for example, as far as the boundary of M along the second coordinate, with 
the first coordinate fixed. By continuing in this way, the entire region M can be traversed after a finite 
number of steps (nodes). However, it is important to emphasize the obvious point that increasing the 
dimension by one increases the number of interpolation vertices by a factor equal to the average number 
of vertices joined to each existing vertex. Thus, to save computer time, it is advisable to reduce the number 
of interpolation vertices in the CP method by reducing their density at places where the interpolated 
function changes sufficiently smoothly. 

In the case of one-dimensional regions, there are various ways in which the interpolation can be carried 
out; the method of spline interpolation [4] is particularly suitable and efficient. For two-dimensional 
regions, it is better to use interpolation over scattered points by means of a triangulation method; specific 
numeral realizations can be found in the NAG library (Numerical Algorithms Group, E O 1 S B F - - N A G  
FORTRAN Routine Library Document).  An effective method of interpolation over scattered points 
for regions of dimension three or more is the modified Shepard method [5]. 

4. E X A M P L E  

Consider the maximum fast flight (O(T, v) = 7) of a spacecraft (SC) with a solar sail (SS) towards a given list 
of asteroids with a circular heliocentric orbit.t The sail is assumed to be flat and ideally reflecting, and to be 
controlled by two angles of orientation ct and 13 (Fig. 1, where S in the sun, E is the Earth, and the cross denotes 
the starting point). Here 13 ~ [0, n/2] is the angle between the normal to the sail and the direction away from the 
Sun and a ~ [0, 2~] is the angle between the unit vector e¢ of a local basis of cylindrical coordinates (co, %, ez) and 
the plane formed by the normal to the panel and the direction towards the Sun. It is assumed that at the initial 
time the spacecraft was moving together with the non-attracting Earth, i.e. it has its velocity on the boundary of 
its (point) sphere of action. We introduce the following coordinates of the terminal point (Fig. 1): d is the distance 
from this point to the Earth's orbit, ~/is the angle between the perpendicular to the Earth's orbit from the terminal 
point and the ecliptic plane and T is the angle in the ecliptic plane between the heliocentric radius vectors of the 
spacecraft and the Earth at the final instant of the motion. 

We will take the units to be the distance from the Earth to the Sun and the time taken for the Earth to rotate 
around the Sun divided by 2x (that is, one year is equal to 2n radians), and relate the sail thrust to the parameter 
a, which is equal to the ratio of the maximum sail thrust to the attraction of the Sun. The motion of the spacecraft 
and solar sail is considered in a rotating system of coordinates associated with the Earth, in which the radius vector 
of the spacecraft 

x = ( x  i, x 2, x3) r=(dcos¥ ,  dsin~, y)r  

is associated with the actual non-rotating cylindrical coordinates (p, ¢, z) of the spacecraft by relations x 1 = 13 -- 1, 
x2 = z, x3 = 0 - t (assuming that the coordinate of the Earth ¢ = 0 at time t = 0). In projections onto the axes p, 
¢, z the velocity vector of the spacecraft relative to the Earth v = (u, . - 1, ~z), where u is the radial velocity in 
the plane (p, ~), ~ = PiP is the transversal velocity in the same plane, ~z is the velocity in thex direction. The form 
of the functions f and g for the controlled system (which follows from the equations of motion of the spacecraft 
with a solar sail written in a non-rotating system of coordinates in the central field of the Sun's attraction [6] is 

"PPOMZANOV, M. V., Interpolation of an optimal manifold for calculating the minimum flight time towards asteroids of a 
spacecraft with solar sail. Preprint No. 45, Inst. im. M. V. Keldysha Ross. Akad. Nauk, Moscow, 1996. 
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3 = acos213(cos0sin cc sinl3 + sin 0sin ~ ) -  sin 0 

r 2 = p 2 + z 2 ,  c o s 0 = p / r ,  s inO=z/r  

When d = 0 and T ffi 0 the spacecraft moves with the Earth. 
The level lines of  the minimum time T*(Xl, X2) of flight towards the point (xl, x2) = (dcos ¥, dsin ¥)  are shown 

in the upper part of Fig. 2 for ¥ e [0, ;r], a ffi 0.083. The dashed curves are the boundary of the level lines in the 
(xl, x2) plane for flight times Tas(xl, xz), calculated analytically from the first of asymptotic formulae (2.2) of the 
theorem 
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Fig. 2. 
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T212=(dla)leos2¥, ¥e[-~12,  x / 2 ]  

The curves numbered 1, 2, 3, 4, 5, 6, 7, 8, 9 correspond to flight times 0.97; 1.49; 2.03; 2.59; 3.15; 3.71; 4.28; 4.84; 
5.41. 

The symmetry of T*, Tas with respect to ¥ and - ¥  means that the two graphs can be plotted on one figure. The 
"solar sail" thrustor has an obvious peculiarity, in that the projection of the sail thrust onto the direction from the 
Sun is always non-negative; thus, a spac.exxaft with a solar sail will not enter the Earth's orbit as T ~ 0. For reasonably 
long flight times T the actual picture is very different from that: a spacecraft with a solar sail can reach a point 
inside the Earth's orbi~t in roughly the same time as an external point the same distance away from the Earth's 
orbit. 

Figure 3 shows curves of T*(d) (the solid curve) and Tas(d) = ~l(2d/a) (the dashed curve) for ¥ = 0, a = 0.083. 
Clearly, the curves almost coincide up to d = 0.1-0.15, after which there is a considerable difference between the 
limiting flight times and the exact values obtained by solving the boundary-value problem. Thus, in Fig. 2, even as 
asymptotic level lines numbered 4, 5 and 6 differ markedly from the calculated ones for the same minimum times 
T*. 

The position of the asteroid in space Xa(t) is uniquely defined by the functions da(t), ~a(t), ya(t) which depend 
on orbit elements. In the calculation of the optimal manifold for the spacecraft with a solar sail, which depends 
on ya(t), where the region M is such that d, ~, y ~ M (in the given example we took T o = 5 rad), the dependence 
of the minimum flight times on the date of encounter is 

Tr(tr)=T*(da(tr), Ya(tr), Ya(tr)) 

for asteroids which can be reached in a minimum time not greater than T °. 
Figure 4 shows these curves for the encounter period 4.01.97-4.01.98. The numbers on some of the curves indicate 

the catalogue number of the asteroids [7] (all the times are measured in radians: 2g rad = 1 year). 
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